
A Novel Approach for an Early Test Case Generation
using Genetic Algorithm and Dominance Concept

based on Use cases

Alekhya Varikuti ,Deepika Puvvula

Department of Computer Science and Engineering, GITAM University,
Visakhapatnam, A.P., India .

Abstract— This paper presents an integrated approach for
generating test cases using Genetic Algorithm and dominance
relation with fitness function. We investigated early
generation of test cases using use cases and scenarios. In the
process of generating test cases first we constructed control
flow graph based on that dominance tree is generated. Test
cases are generated by applying Genetic algorithm on
dominance tree with concepts of crossover and mutation.

Keywords—Genetic Algorithms, Dominance, Usecase,
Scenarios, Testing;

I. INTRODUCTION

Software testing is used to improve the quality and increase
the reliability of software. Software testing is a complex,
labor-intensive, and time consuming task that accounts for
approximately 50% of the cost of a software system
development [1]. Test case generation is the process of
identifying input that satisfies test data adequacy criterion.

 We used a GA-based technique and dominance concept
with a new fitness function that reduces the test
requirements and overcomes the existing problems.
 Here we are considering use cases and their corresponding
scenarios for generating test cases. The goal of testing is to
obtain several test cases to check that all the information
included in the use cases have been successfully
implemented under the test. Test cases are optimized by
using genetic algorithm with dominance relation concepts.
A control-flow graph in which the nodes represent actions
(activity, method execution) and the arcs indicate the flow
of control from one action to another. Control flow graph
consists of start node and stop node where each node
represents statement and anode with two or more outgoing
arc is called branch node.
In dominance tree, a node d dominates a node n if every
path from the start node to n must go through d. This is
written as d dom n. A node x in a control flow graph
dominates another node y (x dom y) if every path from r to
y contains x. A dominance relation is said to be strict if x y.

II. ANALYSIS

 There has been much previous work in automatically
generating test data. Most commonly encountered are
random test-data generation, symbolic test-data generation,
dynamic test-data generation and test data generation based
on GA.

Random test data generation consists of generating
inputs at random until useful inputs are found [2,3]. The
problem with this approach is clear with complex programs
or complex adequacy criteria, an adequate test input may
have to satisfy very specific requirements.

 Symbolic test data generation consists of assigning
symbolic values to variables to create an abstract,
mathematical characterization of the program’s
functionality. With this approach, test-data generation can
be reduced to a problem of solving an algebraic expression.
Many test-data generation methods that use symbolic
execution to find inputs that satisfy a test requirement
proposed [4,5,6,7]. A number of problems arise in symbolic
execution like indefinite loops, where the number of
iterations depends on non constant expression and the index
of array where data is referenced indirectly.

 Dynamic test-data generation is based on the idea that if
some desired test requirement is not satisfied, data
collected during execution can be used to determine which
tests come closest to satisfying the requirement. Two
limitations are commonly found in dynamic test-data
generation systems. First many systems make it difficult to
generate tests for large programs because they work only
on simplified programming languages. Second, many
systems use gradient descent techniques to perform
function minimization.

Several search based test data generation techniques
have been developed [8,9,10].These techniques are focused
on finding test data to satisfy a number of control flow
testing and data flow testing. Genetic Algorithm has been
the most widely employed in search based optimization
techniques. Test data generation methods based on genetic
algorithms have many problems due to use of fitness
function.

To solve these problems we proposed a new GA-based
technique and apply the concepts of dominance with a new
fitness function that reduces the test requirements and
overcomes the problems of the previous GA-based test-data
generation methods.

III. PROPOSED METHODOLOGY

In the proposed algorithm, the following concepts were
introduced for an early test case generation and test case
optimization

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4218

A. Use Cases:
A use case is a specification of actions, including

variants, which a system (or other entity) can perform,
interacting with an actor of the system. A use case is a
specific way of using the system by performing some part
of the functionality [11].
B. Scenarios:

 Scenarios represent different run types and operations of
a use case. Each use case there will be one or more
scenarios.
C. Control Flow Graph:

A control-flow graph (in short flow graph) is a directed
graph. The nodes in the graph represent actions (activity,
method execution) and the arcs indicate the flow of control
from one action to another. A flow graph has two special
nodes: the start node and the stop node. The stop node has
no outgoing arcs and every node in a flow graph lies on
some path from the start node to the stop node (the one-
entry one-exit property). A node with one outgoing arc is
called an action node. A node with two or more outgoing
arcs is called a branch node.

A directed graph or digraph G = (V, E) consists of a set
V of nodes or vertices, where each node represents a
statement, and a set E of directed edges or arcs, where a
directed edge e = (n, m) is an ordered pair of adjacent
nodes, called Tail and Head of e, respectively. For a node n
in V, in degree (n) is the number of arcs entering and out
degree (n) the number of arcs leaving it. Fig 1.a represents
control flow graph G for ATM application based on use
case and scenarios.
D. Dominance:

 Let G = (V, E) be a digraph with two distinguished
nodes n0 and nk. A node n dominates a node m if every
path P from the entry node n0 to m contains n. Several
algorithms are given in the literature to find the dominator
nodes in a digraph[12]. By applying the dominance
relations between the nodes of a digraph G, we can obtain a
tree (whose nodes represent the digraph nodes) rooted at n0.
This tree is called the dominator tree Fig 1. (b) show
dominance tree DT(G) for ATM application based on
Control Flow Graph. A (rooted) tree DT (G) = (V, E) is a
digraph in which one distinguished node n0, called the root,
is the Head of no arcs; every node n except the root n0 is a
Head of just one arc and there exists a (unique) path
(dominance path) from the root n0 to each node n; we
denote this path by dom(n). Tree nodes of out degree zero
are called leaves. Here input variables are the functionality
of an application.
E. Principles of Genetic Algorithms:

The basic concepts of GAs are commonly applied to a
variety of problems involving search and optimization.
GAs search methods are rooted in the mechanisms of
evolution and natural genetics. GAs generates a sequence
of populations by using a selection mechanism, and use
crossover and mutation as search mechanisms.

The principle behind GAs is that they create and
maintain a population of individuals represented by
chromosomes (essentially a character string analogous to
the chromosomes appearing in DNA). These chromosomes
are typically encoded solutions to a problem. The

chromosomes then undergo a process of evolution
according to rules of selection, mutation and reproduction.
Each individual in the environment (represented by a
chromosome) receives a measure of its fitness in the
environment. Reproduction selects individuals with high
fitness values in the population, and through crossover and
mutation of such individuals, a new population is derived in
which individuals may be even better fitted to their
environment. The process of crossover involves two
chromosomes swapping chunks of data (genetic
information) and is analogous to the process of sexual
reproduction. Mutation introduces slight changes into a
small proportion of the population and is representative of
an evolutionary step.

The structure of a simple GA is given below.
Simple Genetic Algorithm ()
{
Initialize population;
Evaluate population;
While termination criterion not reached {
Select solutions for next population;
Perform crossover and mutation;
Evaluate population;
 }
}
The algorithm will iterate until the population has

evolved to form a solution to the problem, or until a
maximum number of iterations have occurred.
F. GA-based Test-Case Generation:

The proposed GA for test case generation, developed a
new GA-based technique and apply the concepts of the
dominance relations between nodes of the control flow
graph with new fitness function. The algorithm searches for
test cases that satisfy the all-statements criterion.

1) Representation: The proposed GA uses a binary
vector as a chromosome to represent values of the program
input variables. The length of the vector depends on the
required precision and the domain length for each input
variable.

Suppose we wish to generate test cases for a flow graph
of k input variables x1,…, xk where each variable xi can
take values from a domain Di = [ai, bi].

2) Initial population: Each chromosome (as a test case)
is represented by a binary string of length m. We randomly
generate pop_size m-bit strings to represent the initial
population, where pop_size is the population size. The
appropriate value of pop_size is experimentally determined.
Each chromosome is converted to k decimal numbers
representing values of k input variables x1… xk.
 3) Evaluation function: The algorithm uses a new
evaluation (fitness) function to evaluate the generated test
data. This new fitness function depends on the concepts of
the dominance relations between nodes of the control flow
graph. The algorithm uses this new fitness function to
evaluate each test case by executing with it as input, and
recording the traversed nodes in the program that are
covered by this test case. We denote to the set of traversed
nodes by exePath. Also, it finds the dominance path dom(n)
of the target node n. The fitness function is the ratio of the
number of covered nodes of the dominance path of the

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4219

target node to the total number of nodes of the dominance
path of the target node. The fitness value ft(vi) for each
chromosome vi (i = 1, …, pop_size) is calculated as
follows:

1. Find exePath: the set of the traversed nodes in the
program that are covered by a test case.

2. Find dom(n): dominance path of the target node n (the
set of dominator nodes from the entry of the dominator tree
to n).

3. Determine  exePathndom )(: uncovered

nodes of the dominance path (the difference between the
dominance path and the traversed nodes).

4. Determine  ')(exePathndom  : covered nodes

of the dominance path (the complement set of the
difference set between the dominance path and the
traversed nodes).

5. Calculate)')(exePathndom  : number of

covered nodes of the dominance path (cardinality of the
complement set).

6. Calculate)(ndom : number of nodes of the

dominance path of the target node n (cardinality of the
dominance set). Then,

)(

)')((
)(

ndom

exePathndom
vft i




The fitness value is the only feedback from the problem
for the GA. A test case that is represented by the
chromosome vi is optimal if its fitness value

1)(ivft

4) Selection: After computing the fitness of each test

case in the current population, the algorithm selects test
cases from all the members of the current population that
will be parents of the new population. In the selection
process, the GA uses the roulette wheel method.

For the selection of a new population with respect to the
probability distribution based on fitness values, a roulette
wheel with slots sized according to fitness is used. Such
roulette wheel is constructed as follows:
1. Calculate the fitness value)(ivft for each

chromosome (i=1,...pop_size).
2. Find the total fitness of the population

)(
_

1




sizepop

i
ivftF .

3. Calculate the relative fitness value rft for each

chromosome
F

vft
vrft i

i

)(
)( .

4. Calculate the cumulative fitness value cft for each

chromosome







)()(

)(
)(

1 ii

i
i vrftvcft

vrft
vcft

The selection process is based on spinning the roulette
wheel pop_size times; each time we select a single
chromosome for a new population in the following way:

• Generate a random (float) number r from the range
[0..1].

• If)(ivcftr  then select the first chromosome iv

otherwise select the i-th chromosome

)_2(sizepopiv i  such that

).()(1 ii vcftrvcft

 5) Recombination: In the recombination phase, we use
two operators, crossover and mutation, which are the key to
the power of GAs. These operators create new individuals
from the selected parents to form a new population.

Crossover: It operates at the individual level. During
crossover, two parents (chromosomes) exchange substring
information (genetic material) at a random position in the
chromosome to produce two new strings (offspring). The
objective here is to create better population over time by
combining material from pairs of (fitter) members from the
parent population. Crossover occurs according to a
crossover probability. The probability of crossover
PXOVER gives us the expected
number sizepopPXOVER _ of chromosomes,

which undergo the crossover operation. We proceed in the
following way:
For each chromosome in the parent population:

 • Generate a random (float) number r from the
range [0..1];

 • If r < PXOVER then select given chromosome
for crossover.

Now we mate selected chromosomes randomly: For each
pair of coupled chromosomes we generate a random integer
number pos from the range [1..m-1] (m is the number of
bits in a chromosome). The number pos indicate the
position of the crossing point. Two chromosomes
(b1…bposbpos+1…bm) and (c1…cposcpos+1…cm) are
replaced by a pair of their offspring (b1…bposcpos+1…cm)
and (c1…cposbpos+1…bm).

Mutation: It is performed on a bit-by-bit basis. Mutation
always operates after the crossover operator, and flips each
bit with the pre-determined probability. The probability of
mutation PMUTATION, gives us the expected number of

mutated bits sizepopmPMUTATION _ . Every

bit (in all chromosomes in the whole population) has an
equal chance to undergo mutation (i.e., change from 0 to 1
or vice versa). So we proceed in the following way:

For each chromosome in the current (i.e., after crossover)
population and for each bit within the chromosome:

 • Generate a random (float) number r from the
range [0..1];

 • If r < PMUTATION then mutate the bit.
In the traditional GA approach the population would

evolve until one individual from the whole set which
represents the solution is found. In our case, this condition
would correspond to finding groups of data items achieving
the test requirements (i.e., covering the set of leaves of the
dominator tree) of the tested program. We let the
population evolves until a combined subset of the
population achieves the desired test requirement. The
evolution stops when a set of individuals has traversed the
dominance path of the test requirement and its fitness value
ft(vi) = 1. The solution is this set.

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4220

6) Elitist: The elitist function enhances the current
population by storing the best member of the previous
population. If the best member of the current population is
worse than the best member of the previous population it
exchanges them, and the best member of the current
population would replace the worst member of the current
population. After that, it stores the best member of the
current population.
7) Algorithm:

/* A GA algorithm to generate test cases */
Input:
The use cases to be tested.
Number of input variable;
Domain and precision;
Population size;
Maximum no. Of generation (Max_Gen);
Probability of crossover;
Probability of mutation;
Output:
Set of test cases and set of nodes covered by each test case;
List of uncovered nodes,(if any);
Begin
Step0:Setup
1. Classify the use cases and scenarios
2. Build the control flow graph based on scenarios of each

use case
3. Build the dominator tree DT
4. Find the set of leaves L of the dominator tree.
Step1: Intailization
 Initialize the score board to zero;
 nRun0;
 Set of test cases 

 nCases0;
Step2: Generate test cases
 For each uncovered node and selected before in the set of

nodes to be tested
 Begin
nRunnRun + 1;
Create Intial_population
Current _population Intial_population
No_of_Generation0;
 For each member of current population do
 Begin
Convert the current chromosome to the corresponding set of

decimal values
Execute with the data set as input;
If(the current node is covered) then
Mark the current node as covered;
End If
 End For
 Keep the best member of the current population;
 While (current node is not covered and

no_of_Generations  Max_Gen) do
 Begin
Select set of parents of new population from members of

current population using roulette wheel method;
Create New_population using crossover and mutation

operators;
Current_population New_population;
 For each member of Current_population do
 Begin
Convert current chromosome to the corresponding set of

decimal values;
Execute with the data set as input;
Evaluate the current test case;

If(current node are covered) then
Mark the current node as covered;
 End if;
 End for;
 Elitist function: If the best member of the current population

is worse than the best member of the previous population then
exchange them, and the best member of the current population
would be replace the worst member of the population.

 Increment No_of_Generation;
 End While;
If (The current node is covered) Then
nCasenCases+1;
Add this test case to set of test cases for p;
Update the score board;
Check all uncovered nodes by this test case.
End If
End For;
Step3: Produce Output
Return no of test cases for use cases and set of nodes covered

by test case;
Report on uncovered node, If say;

IV. CASE STUDY
We consider an ATM application and applied the

algorithm. Initially, we consider use case and scenarios of
ATM application as shown in Table 1. Based on use case
and scenarios we construct the control flow graph. Based
on control flow graph we construct dominance tree and
apply genetic algorithm to generate test cases. The uses of
GA parameters were as follows: Maximum
Generation=100, Pxover=0.8, Pmutation=0.15.

Table 1:Usecases and Scenarios of ATM Application.

Usecases Scenarios
Insert card
validation

 Wrongly inserted card
 card is not valid
 valid card

Language
selection
process

 language selected
 cancel

ATM PIN
validation

 Valid PIN
 Invalid PIN and check thrice
 Cancel

Selection
Menu
Validation

 With draw
 Transfer
 Balance Enquiry

With draw  collect cash
 not sufficient amount in ATM
 not Sufficient amount in account
 limit exceed per day

Transfer  valid destination
 not sufficient amount in source

account
Balance
Details

 Balance enquiry
 Mini statement
 cancel

Transaction
Slip

 possible
 Paper not available

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4221

Fig. 1. (a) Control Flow Graph G

Here X represent Insert Card Validation.

 Y represent language selection

 Z represent ATM Pin Validation

 P represents Selection Menu Validation

 Q represent Withdraw option

 R represent Transfer

 S represent Destination Validation

 T Balance Details

 U Transaction slip

Fig 1 (b) Dominance tree DT(G)

Input variables:
X, Y, Z, P, Q, R, S, T, U.
Domain:
0..3,0..1,0..2,0..3,0..3,0..1,0..1,0..2,0..1.
Domain tree leaf nodes:
Dom (7) =1, 2, 4, 7.
Dom (8) =1, 2, 5, 8.
Dom (37) =1, 2, 36, 37.
Dom (10) =1, 2, 3,6,10.
Dom (12) =1, 2, 3,6,9,11,12.
Dom (14) =1, 2, 3,6,9,11,14.
Dom (22) =1, 2,3,6,9,11,13,15,16,19,22.
Dom(23)=1,2,3,6,9,11,13,15,16,19,23.
Dom(24)=1,2,3,6,9,11,13,15,16,19,24.
Dom(25)=1,2,3,6,9,11,13,15,16,19,25.
Dom(26)=1,2,3,6,9,11,13,15,17,20,26.
Dom (28) =1, 2, 3, 6,9,11,13,15,17,20,27,28.
Dom (29) = 1, 2, 3, 6,9,11,13,15,17,20,27,29.
Dom (33) = 1, 2, 3, 6,9,11,13,15,18,21,30,33.
Dom (34) = 1, 2, 3, 6,9,11,13,15,18,21,30,34.
Dom(31)= 1,2,3, 6,9,11,13,15,18,21,31.
Dom(32)= 1,2,3, 6,9,11,13,15,18,21,32.
Dom (35) = 1, 2, 3, 6,9,11,13,15,35.

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4222

A. Results:
The final report of the result is given in Table-2. The test
requirement to be covered is shown and the number of
generations in which the test requirement is covered is
given. And also the status in which test requirement is
covered or not is specified and finally the test cases are
generated. Here input variables represent functionality of
an application.

1) Final Report:
Total number of requirement: 18
Number of covered requirement: 18
The Covered Requirement
are:7,8,37,10,12,14,22,23,24,25,26,28,29,33,34,31,32,35.
Number of uncovered requirement is: 0
Number of Runs: 18.
Total Number of generation: 25.
Maximum generation: 100

Input Variables : X,Y,Z,P,Q,R,S,T,U.
For example, in Table-2, the test requirement to be covered
i.e., dom(7) represents the leaf node of dominance tree. The
number of generations is performed until it covers all nodes
of dom(7). Based on the domain, we provide values to the
input variables (X, Y) that satisfies dom(7) and finally that
value becomes the test cases.

V. CONCLUSION
 This paper explains a new GA-based technique and applies
the concepts of dominance with a new fitness function that
reduces the test requirements. In order to perform early
stage test case generation we consider use cases and
scenarios. Early stage test case generation help in finding
fault detection and reliability of the software.

Table-2 Final Results

Test
Requirement to be

covered

Number of
generations

Covered
(Yes-Y/No-N)

Test Case

X Y Z P Q R S T U

7 1 Y 1 1

8 1 Y 2 0

37 1 Y 3 1

10 2 Y 0 1

12 2 Y 0 0 0

14 1 Y 0 0 2

22 2 Y 0 0 1 0 0

23 1 Y 0 0 1 0 1

24 3 Y 0 0 1 0 2 0 1 2 0

25 1 Y 0 0 1 0 3 0 1 0 1

26 2 Y 0 0 1 1 0 0 1 2 0

28 2 Y 0 0 1 1 0 1 0 2 0

29 1 Y 0 0 1 1 0 1 1 2 0

33 1 Y 0 0 1 2 1 1 0 0 0

34 2 Y 0 0 1 2 3 0 1 0 1

31 1 Y 0 0 1 2 3 1 0 1 0

32 1 Y 0 0 1 2 3 1 0 3 0

35 1 Y 0 0 1 3 0 0 1 3 0

VI. REFERENCES
[1] B. Beizer (1990). Software Testing Techniques. Second Edition,Van

Nostrand Reinhold, New york
[2] H.D.Mills,M.D.Dyer, and R.C.Linger (1987).Clean room Software

Engineering.IEEE Software 4(5), pp. 19-25.
[3] J. M. Voas, L. Morell, and K. W. Miller (1991). Predicting where

Faults Can Hide From Testing. IEEE, 8(2), pp. 41-48.384
Informatica 34 (2010) 377–385 A.S. Ghiduk et al.

[4] J. C. King (1976). Symbolic Execution and Program Testing.
Communications of the ACM, 19 (7), pp. 385-394.

[5] W. E. Howden (1977). Symbolic Testing and the DISSECT Symbolic
Evaluation System. IEEE Transactions on Software Engineering,
3(4), pp. 266-278.

[6] Min Pei, E. D. Goodman, Zongyi Gao, and Kaixiang Zhong (1994).
Automated Software Test Data Generation Using a Genetic
Algorithm" Technical Report GARAGe of Michigan State
University.

 [7] M. Roper, I. Maclean, A. Brooks, J. Miller, and M. Wood (1995).
Genetic Algorithms and the Automatic Generation of Test Data.
Technical report RR/95/195[EFoCS-19-95].

[8] R. P. Pargas, M. J. Harrold, R. R. Peck (1999). Test Data Generation
Using Genetic Algorithms” Journal of Software Testing,
Verifications, and Reliability, vol. 9, pp. 263- 282.

[9] Jin-Cherng Lin and Pu-Lin Yeh (2000). Using Genetic Algorithms for

Test Case Generation in Path Testing. Proceedings of the 9th Asian
Test Symposium (ATS'00).

[10] M. R. Girgis (2005). Automatic Test Data Generation for Data Flow
Testing Using a Genetic Algorithm. Journal of Universal computer
Science, vol. 11, no. 5, pp. 898-915..

[11] Mehmet Aksit, Klaas van den Berg, & Pim van den Broek(1995) Use
Cases in object oriented software development
AMIDST/WP2/N003/V02

[12]T. Lengauer and R. E. Trajan (1979). A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Transactions on programming
Languages and Systems, vol. 1, pp. 121-141.

APPENDIX

A part of the result applying the system to test requirement of dom(10)
Test requirement of Dom (10) = 1 2 3 6 10
Population Size=4
Maximum generation=100
Crossover Probability=0.80
Mutation Probability=0.15
Input Variables: 3
Domain: 0..3,0..1,0..2
Generation-1

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4223

Input Variable: X Y Z
Individual1 =0, 0, 0 =00 0 00
Individual2 =2, 1, 1 =10 1 01
Individual3 =3, 0, 1=11 0 01
Individual4 =1, 1, 0 =01 1 00
Evaluation of population:
Traversed Path= 1 2 3 6 9 11 12
Uncovered dominator path=10
Fitness Value= 0.4
Traversed Path= 1 2 5 8
Uncovered dominator path= 3 6 10
Fitness Value= 0.4
Traversed Path= 1 2 36 37
Uncovered dominator path= 3 6 10
Fitness Value= 0.4
Traversed Path= 1 2 4 7
Uncovered dominator path= 3 6 10
Fitness Value= 0.4
Generation-2
Selection
Selection is performed by Roulette Wheel depended on fitness
Selected cases of Parents of New Population

Individual1 =0, 0, 0 =00 0 00
Individual2 =2, 1, 1 =10 1 01
Individual3 =1, 1, 1=01 1 01
Individual4 =1, 1, 0 =01 1 00

Crossover

Crossover
position

Selection of
individual

Before
Crossover

Before
Crossover

3 1 00 0 00 00 1 00
4 01 1 00 01 0 00

Mutation

Individual before
Mutation

Mutation bit

After Mutation

 4 01 0 00 1 11 0 00

New Population
 Individual 1= 0, 1,0= 00 1 00
 Individual 2= 2, 1, 1= 10 1 01
 Individual 3= 1, 1, 1= 01 1 01
 Individual 4= 3, 0, 0= 11 0 00
Evaluation Of Population
 Individual 1
 Traversed Path= 1 2 3 6 10
 Uncovered Path= -
 Fitness Value= 1.0
 Individual 2
 Traversed Path= 1 2 5 8
 Uncovered Path= 3 6 10
 Fitness Value= 0.4
 Individual 3
 Traversed Path= 1 2 4 7
 Uncovered Path= 3 6 10
 Fitness Value= 0.4
 Individual 4
 Traversed Path= 1 2 36 37
 Best Fitness is: 1.0
Average of fitness: 0.55
No of Generations=2
The Test Requirement is Satisfied and Generated test case is 0, 1, 0 at

Individual 1

AUTHORS BIOGRAPHY

Alekhya Varikuti is pursuing M.Tech in Software Engineering from
GITAM UNIVERSITY, Visakhapatnam, A.P., INDIA. Her research areas
include Software Testing, Software Quality Assurance, and Software
Reliability.

Deepika Puvvula is pursuing M.Tech in Software Engineering from
GITAM UNIVERSITY, Visakhapatnam, A.P., INDIA. Her research areas
include Software Quality Assurance, Software Reliability and Software
Estimation Techniques

Alekhya Varikuti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4218-4224

4224

