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Abstract— This paper presents an integrated approach for 
generating test cases using Genetic Algorithm and dominance 
relation with fitness function. We investigated early 
generation of test cases using use cases and scenarios. In the 
process of generating test cases first we constructed control 
flow graph based on that dominance tree is generated. Test 
cases are generated by applying Genetic algorithm on 
dominance tree with concepts of crossover and mutation. 

 
Keywords—Genetic Algorithms, Dominance, Usecase, 
Scenarios, Testing; 

 
I. INTRODUCTION 

Software testing is used to improve the quality and increase 
the reliability of software. Software testing is a complex, 
labor-intensive, and time consuming task that accounts for 
approximately 50% of the cost of a software system 
development [1]. Test case generation is the process of 
identifying input that satisfies test data adequacy criterion. 

      We used a GA-based technique and dominance concept 
with a new fitness function that reduces the test 
requirements and overcomes the existing problems. 
  Here we are considering use cases and their corresponding 
scenarios for generating test cases. The goal of testing is to 
obtain several test cases to check that all the information 
included in the use cases have been successfully 
implemented under the test. Test cases are optimized by 
using genetic algorithm with dominance relation concepts. 
A control-flow graph in which the nodes represent actions 
(activity, method execution) and the arcs indicate the flow 
of control from one action to another. Control flow graph 
consists of start node and stop node where each node 
represents statement and anode with two or more outgoing 
arc is called branch node. 
In dominance tree, a node d dominates a node n if every 
path from the start node to n must go through d. This is 
written as d dom n. A node x in a control flow graph 
dominates another node y (x dom y) if every path from r to 
y contains x. A dominance relation is said to be strict if x y. 

 
II. ANALYSIS 

 There has been much previous work in automatically 
generating test data. Most commonly encountered are 
random test-data generation, symbolic test-data generation, 
dynamic test-data generation and test data generation based 
on GA. 

Random test data generation consists of generating 
inputs at random until useful inputs are found [2,3]. The 
problem with this approach is clear with complex programs 
or complex adequacy criteria, an adequate test input may 
have to satisfy very specific requirements.   

 Symbolic test data generation consists of assigning 
symbolic values to variables to create an abstract, 
mathematical characterization of the program’s 
functionality. With this approach, test-data generation can 
be reduced to a problem of solving an algebraic expression. 
Many test-data generation methods that use symbolic 
execution to find inputs that satisfy a test requirement 
proposed [4,5,6,7]. A number of problems arise in symbolic 
execution like indefinite loops, where the number of 
iterations depends on non constant expression and the index 
of array where data is referenced indirectly. 

 Dynamic test-data generation is based on the idea that if 
some desired test requirement is not satisfied, data 
collected during execution can be used to determine which 
tests come closest to satisfying the requirement. Two 
limitations are commonly found in dynamic test-data 
generation systems. First many systems make it difficult to 
generate tests for large programs because they work only 
on simplified programming languages. Second, many 
systems use gradient descent techniques to perform 
function minimization. 

Several search based test data generation techniques 
have been developed [8,9,10].These techniques are focused 
on finding test data to satisfy a number of control flow 
testing and data flow testing. Genetic Algorithm has been 
the most widely employed in search based optimization 
techniques. Test data generation methods based on genetic 
algorithms have many problems due to use of fitness 
function. 

To solve these problems we proposed a new GA-based 
technique and apply the concepts of dominance with a new 
fitness function that reduces the test requirements and 
overcomes the problems of the previous GA-based test-data 
generation methods. 

 
III. PROPOSED  METHODOLOGY 

In the proposed algorithm, the following concepts were 
introduced for an early test case generation and test case 
optimization  
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A. Use Cases: 
A use case is a specification of actions, including 

variants, which a system (or other entity) can perform, 
interacting with an actor of the system. A use case is a 
specific way of using the system by performing some part 
of the functionality [11].  
B. Scenarios: 

 Scenarios represent different run types and operations of 
a use case. Each use case there will be one or more 
scenarios. 
C. Control Flow Graph: 

A control-flow graph (in short flow graph) is a directed 
graph. The nodes in the graph represent actions (activity, 
method execution) and the arcs indicate the flow of control 
from one action to another. A flow graph has two special 
nodes: the start node and the stop node. The stop node has 
no outgoing arcs and every node in a flow graph lies on 
some path from the start node to the stop node (the one-
entry one-exit property). A node with one outgoing arc is 
called an action node. A node with two or more outgoing 
arcs is called a branch node. 

A directed graph or digraph G = (V, E) consists of a set 
V of nodes or vertices, where each node represents a 
statement, and a set E of directed edges or arcs, where a 
directed edge e = (n, m) is an ordered pair of adjacent 
nodes, called Tail and Head of e, respectively. For a node n 
in V, in degree (n) is the number of arcs entering and out 
degree (n) the number of arcs leaving it. Fig 1.a represents 
control flow graph G for ATM application based on use 
case and scenarios. 
D. Dominance: 

     Let G = (V, E) be a digraph with two distinguished 
nodes n0 and nk. A node n dominates a node m if every 
path P from the entry node n0 to m contains n. Several 
algorithms are given in the literature to find the dominator 
nodes in a digraph[12]. By applying the dominance 
relations between the nodes of a digraph G, we can obtain a 
tree (whose nodes represent the digraph nodes) rooted at n0. 
This tree is called the dominator tree Fig 1. (b)  show 
dominance tree DT(G) for ATM application based on 
Control Flow Graph. A (rooted) tree DT (G) = (V, E) is a 
digraph in which one distinguished node n0, called the root, 
is the Head of no arcs; every node n except the root n0 is a 
Head of just one arc and there exists a (unique) path 
(dominance path) from the root n0 to each node n; we 
denote this path by dom(n). Tree nodes of out degree zero 
are called leaves. Here input variables are the functionality 
of an application. 
E. Principles of Genetic Algorithms: 

The basic concepts of GAs are commonly applied to a 
variety of problems involving search and optimization. 
GAs search methods are rooted in the mechanisms of 
evolution and natural genetics. GAs generates a sequence 
of populations by using a selection mechanism, and use 
crossover and mutation as search mechanisms. 

The principle behind GAs is that they create and 
maintain a population of individuals represented by 
chromosomes (essentially a character string analogous to 
the chromosomes appearing in DNA). These chromosomes 
are typically encoded solutions to a problem. The 

chromosomes then undergo a process of evolution 
according to rules of selection, mutation and reproduction. 
Each individual in the environment (represented by a 
chromosome) receives a measure of its fitness in the 
environment. Reproduction selects individuals with high 
fitness values in the population, and through crossover and 
mutation of such individuals, a new population is derived in 
which individuals may be even better fitted to their 
environment. The process of crossover involves two 
chromosomes swapping chunks of data (genetic 
information) and is analogous to the process of sexual 
reproduction. Mutation introduces slight changes into a 
small proportion of the population and is representative of 
an evolutionary step. 

The structure of a simple GA is given below. 
Simple Genetic Algorithm () 
{ 
Initialize population; 
Evaluate population; 
While termination criterion not reached { 
Select solutions for next population; 
Perform crossover and mutation; 
Evaluate population; 
 } 
} 
The algorithm will iterate until the population has 

evolved to form a solution to the problem, or until a 
maximum number of iterations have occurred. 
F.  GA-based Test-Case Generation: 

The proposed GA for test case generation, developed a 
new GA-based technique and apply the concepts of the 
dominance relations between nodes of the control flow 
graph with new fitness function. The algorithm searches for 
test cases that satisfy the all-statements criterion. 

1) Representation: The proposed GA uses a binary 
vector as a chromosome to represent values of the program 
input variables. The length of the vector depends on the 
required precision and the domain length for each input 
variable.  

Suppose we wish to generate test cases for a flow graph 
of k input variables x1,…, xk where each variable xi can 
take values from a domain Di = [ai, bi].  

2) Initial population: Each chromosome (as a test case) 
is represented by a binary string of length m. We randomly 
generate pop_size m-bit strings to represent the initial 
population, where pop_size is the population size. The 
appropriate value of pop_size is experimentally determined. 
Each chromosome is converted to k decimal numbers 
representing values of k input variables x1… xk.  
    3) Evaluation function: The algorithm uses a new 
evaluation (fitness) function to evaluate the generated test 
data. This new fitness function depends on the concepts of 
the dominance relations between nodes of the control flow 
graph. The algorithm uses this new fitness function to 
evaluate each test case by executing with it as input, and 
recording the traversed nodes in the program that are 
covered by this test case. We denote to the set of traversed 
nodes by exePath. Also, it finds the dominance path dom(n) 
of the target node n. The fitness function is the ratio of the 
number of covered nodes of the dominance path of the 
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target node to the total number of nodes of the dominance 
path of the target node. The fitness value ft(vi) for each 
chromosome vi (i = 1, …, pop_size) is calculated as 
follows:  

1. Find exePath: the set of the traversed nodes in the 
program that are covered by a test case. 

2. Find dom(n): dominance path of the target node n (the 
set of dominator nodes from the entry of the dominator tree 
to n). 

3. Determine  exePathndom )(  : uncovered 

nodes of the dominance path (the difference between the 
dominance path and the traversed nodes). 

4. Determine  ')( exePathndom   : covered nodes 

of the dominance path (the complement set of the 
difference set between the dominance path and the 
traversed nodes). 

5. Calculate )')( exePathndom   : number of 

covered nodes of the dominance path  (cardinality of the 
complement set).  

6. Calculate  )( ndom  : number of nodes of the 

dominance path of the target node n (cardinality of the 
dominance set). Then, 

  
)(

)')((
)(

ndom

exePathndom
vft i


  

The fitness value is the only feedback from the problem 
for the GA. A test case that is represented by the 
chromosome vi is optimal if its fitness value  

1)( ivft   

 
4) Selection: After computing the fitness of each test 

case in the current population, the algorithm selects test 
cases from all the members of the current population that 
will be parents of the new population. In the selection 
process, the GA uses the roulette wheel method. 

For the selection of a new population with respect to the 
probability distribution based on fitness values, a roulette 
wheel with slots sized according to fitness is used. Such 
roulette wheel is constructed as follows: 
1. Calculate the fitness value )( ivft  for each       

chromosome   (i=1,...pop_size). 
2. Find the total fitness of the population 

)(
_

1




sizepop

i
ivftF . 

3. Calculate the relative fitness value rft for each 

chromosome
F

vft
vrft i

i

)(
)(  . 

4. Calculate the cumulative fitness value cft  for each 

chromosome







 )()(

)(
)(

1 ii

i
i vrftvcft

vrft
vcft    

The selection process is based on spinning the roulette 
wheel pop_size times; each time we select a single 
chromosome for a new population in the following way: 

• Generate a random (float) number r from the range 
[0..1]. 

• If )( ivcftr   then select the first chromosome iv   

otherwise select the i-th chromosome 

)_2( sizepopiv i  such that 

).()( 1 ii vcftrvcft   

 5)  Recombination: In the recombination phase, we use 
two operators, crossover and mutation, which are the key to 
the power of GAs. These operators create new individuals 
from the selected parents to form a new population. 

Crossover: It operates at the individual level. During 
crossover, two parents (chromosomes) exchange substring 
information (genetic material) at a random position in the 
chromosome to produce two new strings (offspring). The 
objective here is to create better population over time by 
combining material from pairs of (fitter) members from the 
parent population. Crossover occurs according to a 
crossover probability. The probability of crossover 
PXOVER gives us the expected 
number sizepopPXOVER _     of chromosomes, 

which undergo the crossover operation. We proceed in the 
following way:  
For each chromosome in the parent population: 

         • Generate a random (float) number r from the 
range [0..1]; 

         • If r < PXOVER then select given chromosome 
for crossover. 

Now we mate selected chromosomes randomly: For each 
pair of coupled chromosomes we generate a random integer 
number pos from the range [1..m-1] (m is the number of 
bits in a chromosome). The number pos indicate the 
position of the crossing point. Two chromosomes 
(b1…bposbpos+1…bm) and (c1…cposcpos+1…cm) are 
replaced by a pair of their offspring (b1…bposcpos+1…cm) 
and (c1…cposbpos+1…bm). 

Mutation: It is performed on a bit-by-bit basis. Mutation 
always operates after the crossover operator, and flips each 
bit with the pre-determined probability. The probability of 
mutation PMUTATION, gives us the expected number of 

mutated bits sizepopmPMUTATION _    . Every 

bit (in all chromosomes in the whole population) has an 
equal chance to undergo mutation (i.e., change from 0 to 1 
or vice versa). So we proceed in the following way: 

For each chromosome in the current (i.e., after crossover) 
population and for each bit within the chromosome: 

         • Generate a random (float) number r from the 
range [0..1]; 

         • If r < PMUTATION then mutate the bit. 
In the traditional GA approach the population would 

evolve until one individual from the whole set which 
represents the solution is found. In our case, this condition 
would correspond to finding groups of data items achieving 
the test requirements (i.e., covering the set of leaves of the 
dominator tree) of the tested program. We let the 
population evolves until a combined subset of the 
population achieves the desired test requirement. The 
evolution stops when a set of individuals has traversed the 
dominance path of the test requirement and its fitness value 
ft(vi) = 1. The solution is this set. 
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6)  Elitist: The elitist function enhances the current 
population by storing the best member of the previous 
population. If the best member of the current population is 
worse than the best member of the previous population it 
exchanges them, and the best member of the current 
population would replace the worst member of the current 
population. After that, it stores the best member of the 
current population. 
7) Algorithm: 

/* A GA algorithm to generate test cases */ 
Input: 
The use cases to be tested. 
Number of  input variable; 
Domain and precision; 
Population size; 
Maximum no. Of generation (Max_Gen); 
Probability of crossover; 
Probability of mutation; 
Output: 
Set of test cases and set of nodes covered by each test case; 
List of uncovered nodes,(if any); 
Begin 
Step0:Setup 
1. Classify the use cases and scenarios 
2. Build the control flow graph based on scenarios of each 

use case 
3. Build the dominator tree DT 
4. Find the set of leaves L of the dominator tree. 
Step1: Intailization 
    Initialize the score board to zero; 
    nRun0; 
    Set of test cases   

     nCases0; 
Step2: Generate test cases 
 For each uncovered node and selected before in the set of 

nodes to be tested 
 Begin 
nRunnRun + 1; 
Create Intial_population 
Current _population Intial_population 
No_of_Generation0; 
       For each member of current population do 
       Begin 
Convert the current chromosome to the corresponding set of 

decimal values 
Execute with the data set as input; 
If(the current node is covered) then 
Mark the current node as covered; 
End If 
       End For 
       Keep the best member of the current population; 
       While (current node is not covered and 

no_of_Generations   Max_Gen) do 
       Begin 
Select set of parents of new population from members of 

current population using roulette wheel method; 
Create New_population using crossover and mutation 

operators; 
Current_population New_population; 
        For each member of Current_population do 
        Begin 
Convert current chromosome to the corresponding set of 

decimal values; 
Execute with the data set as input; 
Evaluate the current test case; 

If(current node are covered) then 
Mark the current node as covered; 
        End if; 
        End for; 
    Elitist function: If the best member of the current population 

is worse than the best    member of the previous population then 
exchange them, and the best member of the current population 
would be replace the worst member of the population. 

       Increment No_of_Generation; 
       End While; 
If (The current node is covered) Then 
nCasenCases+1; 
Add this test case to set of test cases for p; 
Update the score board; 
Check all uncovered nodes by this test case. 
End If 
End For; 
Step3: Produce Output 
Return no of test cases for use cases and set of nodes   covered 

by test case; 
Report on uncovered node, If say; 
 

IV. CASE STUDY 
We consider an ATM application and applied the 

algorithm. Initially, we consider use case and scenarios of 
ATM application  as shown in Table 1. Based on use case 
and scenarios we construct the control flow graph. Based 
on control flow graph we construct dominance tree and 
apply genetic algorithm to generate test cases. The uses of 
GA parameters were as follows: Maximum 
Generation=100, Pxover=0.8, Pmutation=0.15. 

 
Table 1:Usecases and Scenarios of ATM Application. 
 
Usecases Scenarios 
Insert card 
validation 
 

 Wrongly inserted card 
 card is not valid 
 valid card 

Language 
selection 
process 

 language selected 
 cancel 

ATM PIN 
validation 

 Valid PIN 
 Invalid PIN and check thrice 
 Cancel 

Selection 
Menu 
Validation 

 With draw 
 Transfer 
 Balance Enquiry 

With draw  collect cash 
 not sufficient amount  in ATM 
 not Sufficient amount in  account 
 limit exceed per day 

Transfer  valid destination 
 not sufficient amount in source 

account 
Balance 
Details 

 Balance enquiry 
 Mini statement 
 cancel 

Transaction 
Slip 

 

 possible 
 Paper not available 
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Fig. 1. (a) Control Flow Graph G 

 

Here  X represent Insert Card Validation. 

          Y represent language selection 

          Z represent ATM Pin Validation 

          P represents Selection Menu Validation 

          Q represent Withdraw option 

          R represent Transfer 

          S represent Destination Validation 

          T Balance Details 

          U Transaction slip 

 

 

 

 

 

Fig 1 (b) Dominance tree DT(G) 

 
Input variables: 
X, Y, Z, P, Q, R, S, T, U. 
Domain: 
0..3,0..1,0..2,0..3,0..3,0..1,0..1,0..2,0..1. 
Domain tree leaf nodes: 
Dom (7) =1, 2, 4, 7. 
Dom (8) =1, 2, 5, 8. 
Dom (37) =1, 2, 36, 37. 
Dom (10) =1, 2, 3,6,10. 
Dom (12) =1, 2, 3,6,9,11,12. 
Dom (14) =1, 2, 3,6,9,11,14. 
Dom (22) =1, 2,3,6,9,11,13,15,16,19,22. 
Dom(23)=1,2,3,6,9,11,13,15,16,19,23. 
Dom(24)=1,2,3,6,9,11,13,15,16,19,24. 
Dom(25)=1,2,3,6,9,11,13,15,16,19,25. 
Dom(26)=1,2,3,6,9,11,13,15,17,20,26. 
Dom (28) =1, 2, 3, 6,9,11,13,15,17,20,27,28. 
Dom (29) = 1, 2, 3, 6,9,11,13,15,17,20,27,29. 
Dom (33) = 1, 2, 3, 6,9,11,13,15,18,21,30,33. 
Dom (34) = 1, 2, 3, 6,9,11,13,15,18,21,30,34. 
Dom(31)= 1,2,3, 6,9,11,13,15,18,21,31. 
Dom(32)= 1,2,3, 6,9,11,13,15,18,21,32. 
Dom (35) = 1, 2, 3, 6,9,11,13,15,35.  
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A. Results: 
The final report of the result is given in Table-2. The test 
requirement to be covered is shown and the number of 
generations in which the test requirement is covered is 
given. And also the  status in which test requirement is 
covered or not is specified and finally the test cases are 
generated. Here input variables represent functionality of 
an application. 

1) Final Report: 
Total number of requirement: 18 
Number of covered requirement: 18 
The Covered Requirement 
are:7,8,37,10,12,14,22,23,24,25,26,28,29,33,34,31,32,35. 
Number of uncovered requirement is: 0 
Number of Runs: 18. 
Total Number of generation: 25. 
Maximum generation: 100 

Input Variables : X,Y,Z,P,Q,R,S,T,U. 
For example, in Table-2, the test requirement to be covered 
i.e., dom(7) represents the leaf node of dominance tree. The 
number of generations is performed until it covers all nodes 
of dom(7). Based on the domain, we provide values to the 
input variables (X, Y) that satisfies dom(7) and finally that 
value becomes the test cases. 
 

V. CONCLUSION 
 This paper explains a new GA-based technique and applies 
the concepts of dominance with a new fitness function that 
reduces the test requirements. In order to perform early 
stage test case generation we consider use cases and 
scenarios. Early stage test case generation help in finding 
fault detection and reliability of the software. 
 
 

 
Table-2 Final Results 

Test 
Requirement  to be 

covered 

Number of 
generations 

Covered 
(Yes-Y/No-N) 

Test Case 

X Y Z P Q R S T U 

7 1 Y 1 1        

8 1 Y 2 0        

37 1 Y 3 1        

10 2 Y 0 1        

12 2 Y 0 0 0       

14 1 Y 0 0 2       

22 2 Y 0 0 1 0 0     

23 1 Y 0 0 1 0 1     

24 3 Y 0 0 1 0 2 0 1 2 0 

25 1 Y 0 0 1 0 3 0 1 0 1 

26 2 Y 0 0 1 1 0 0 1 2 0 

28 2 Y 0 0 1 1 0 1 0 2 0 

29 1 Y 0 0 1 1 0 1 1 2 0 

33 1 Y 0 0 1 2 1 1 0 0 0 

34 2 Y 0 0 1 2 3 0 1 0 1 

31 1 Y 0 0 1 2 3 1 0 1 0 

32 1 Y 0 0 1 2 3 1 0 3 0 

35 1 Y 0 0 1 3 0 0 1 3 0 
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APPENDIX  

A part of the result applying the system to test requirement  of dom(10) 
Test requirement of Dom (10) = 1 2 3 6 10 
Population Size=4 
Maximum generation=100 
Crossover Probability=0.80 
Mutation Probability=0.15 
Input Variables: 3 
Domain: 0..3,0..1,0..2 
Generation-1 
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Input Variable:         X   Y   Z 
Individual1 =0, 0, 0 =00   0 00 
Individual2 =2, 1, 1 =10   1 01 
Individual3 =3, 0, 1=11    0 01 
Individual4 =1, 1, 0 =01   1 00 
Evaluation of population: 
Traversed Path= 1 2 3 6 9 11 12  
Uncovered dominator path=10 
Fitness Value= 0.4 
Traversed Path= 1 2 5 8 
Uncovered dominator path= 3 6 10 
Fitness Value= 0.4 
Traversed Path= 1 2 36 37 
Uncovered dominator path= 3 6 10 
Fitness Value= 0.4 
Traversed Path= 1 2 4 7  
Uncovered dominator path= 3 6 10 
Fitness Value= 0.4 
Generation-2 
Selection 
Selection is performed by Roulette Wheel depended on fitness 
Selected cases of Parents of New Population 
 
Individual1 =0, 0, 0 =00   0 00 
Individual2 =2, 1, 1 =10   1 01 
Individual3 =1, 1, 1=01    1 01 
Individual4 =1, 1, 0 =01   1 00 
 
Crossover 

Crossover 
position     

Selection of 
individual   

Before 
Crossover 

Before 
Crossover 

3 1 00 0 00 00 1 00 
4 01 1 00 01 0 00 

 
Mutation 

Individual   before 
Mutation    

Mutation bit
  

After Mutation 

      4       01 0 00          1        11 0 00 
 
New Population     
  Individual 1= 0, 1,0=  00 1 00 
  Individual 2= 2, 1, 1= 10 1 01 
  Individual 3= 1, 1, 1= 01 1 01 
  Individual 4= 3, 0, 0= 11 0 00 
Evaluation Of Population 
  Individual 1 
  Traversed Path= 1 2 3 6 10  
  Uncovered Path= - 
  Fitness Value= 1.0 
  Individual 2 
  Traversed Path= 1 2 5 8 
  Uncovered Path= 3 6 10 
  Fitness Value= 0.4 
  Individual 3 
  Traversed Path= 1 2 4 7  
  Uncovered Path= 3 6 10 
  Fitness Value= 0.4 
  Individual 4 
  Traversed Path= 1 2 36 37 
  Best Fitness is: 1.0         
Average of fitness: 0.55 
No of Generations=2 
The Test Requirement is Satisfied and Generated test case is 0, 1, 0 at 

Individual 1 
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